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Abstract: This study examined the multivariate analysis of chemical components of tobacco leaves using Canonical 

Correlation Analysis which seeks to identify and quantify the association between two sets of variables. The paper 

focused on using Canonical Correlation Analysis to analyze data on chemical components of 25 tobacco leaf samples. 

The multivariate data satisfied the normality assumption. The data for this study, which contains three criterion 

measures and six predictor variables, were analyzed using the “SAS” statistical software package. Based on the 

results obtained, and the hypotheses carried out, it was revealed that out of the three sample canonical correlations, 

the first two ( )842.0ˆ,933.0(ˆ
21 == ∗∗ ρρ  are significant, while the third one (

∗
3ρ̂ = 0.373) is insignificant. 

The analysis also revealed that the first sample canonical variate, 1Û , of the criterion measures is a “better” 

representative of its set than the first sample canonical variate, 1Û , of the predictor variables of its set. 
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Introduction 

In many research settings, the social scientist encounters a phenomenon that is best described not in terms of a single 

criterion but, because of its complexity, in terms of a number of response measures (William and Matthew; 1984). In 

such cases, interest may center on the relationship between the set of criterion measures and the set of explanatory 

factors. In a manufacturing process, for instance, we might be concerned with the relationship between a set of 

organic chemical constituent variables, on the one hand, and various inorganic chemical constituent variables on the 

other hand, as it is applicable in this paper. In the business or economic fields, we might be interested in the 

relationship between a set of price indices and a set of production indices, with a view towards (say) predicting one 

from the other. The study of the relationship between a set of predictor variables and a set of response measures is 

known as canonical correlation analysis.  
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Canonical correlation analysis seeks to identify and quantify the associations between two sets of variables (Johnson 

and Wichern; 1992). Canonical correlation analysis focuses on the correlation between a linear combination of the 

variables in one set and a linear combination of the variables in another set. The idea is first to determine the pair of 

linear combinations having the largest correlation. Next, we determine the pair of linear combinations having the 

largest correlation among all parts uncorrelated with the initially selected pair. The process continues. The pairs of 

linear combinations are called the canonical variables, and their correlations are called canonical correlations. 

The canonical correlations measure the strength of association between the two sets of variables. The maximization 

aspect of the technique represents an attempt to concentrate a high-dimensional relationship between two sets of 

variables into a few pairs of canonical variables. 

With a growing number of large scales genomic data the focus these days have been in finding the relationship 

between two or more sets of variables. One of the classical methods that can be used in cases when we have two set 

of variables from the same subject is Canonical Correlation Analysis (CCA) but it lacks biological interpretation for 

situations in which each set of variables has more than thousands of variables. This issue was first addressed by 

Parkhomenko et al (2009) who proposed a novel method for Sparse Canonical Correlation Analysis (SCCA). 

Recently there are a few other proposed methods to find relationship between two sets of variables based on different 

penalty functions but there are very few comparative studies that have been done so far. A few of the proposed 

methods are Waaijenborg et al (2008) who used SCCA to find relationships between the effect of copy number 

alterations on gene expression and progression of glioma, Witten and Tibshirani (2009) used SCCA to find 

association between gene expression and array comparative genome hybridization (CGH) measurements, 

Parkhomenko et al. (2009) and Waaijenborg et al (2009) used SCCA technique to find correlation between Single-

Nucleotide Polymorphism (SNP) and gene expression data, and Lee et al (2011) used SCCA approach to find 

association between gene expression and proteomic data. SCCA was first introduced by Parkhomenko et al (2009) in 

which a sparseness parameter controls how many variables will be included from each data set.  

The algorithm proposed by Witten et al (2009) for computing Sparse CCA is similar to that of Waaijenborg et al 

(2008). Waaijenborg et al (2008) penalized the classical CCA as an iterative regression and then applied an elastic net 

penalty to find the canonical vectors. The elastic net is a combination of ridge regression and lasso. For more detail 

about ridge regression, see Hoerl (1962). 

 

Materials and Methods 

The method of analysis used in this study is the Canonical Correlation Analysis. This paper shall focus on how to 

analyze a sample of 25 samples of tobacco leaf for organic and inorganic chemical constituents in a manufacturing 

company using the SAS Statistical Software Package. 

 

CANONICAL VARIATES AND CANONICAL CORRELATIONS 

In this paper, we shall be interested in measures of association between two groups of variables. The first group of p 

variables is represented by the (p × 1) random vector X(1). The second group of q variables is represented by the (q × 

1) random vector X(2). We assume, in the theoretical development, that X(1) represents the smaller set, so that p ≤ q. 



Ekezie et al. /Int. Journal of Emerging Knowledge, 2013, Vol. 1(5): 69-89 Page 71 

 

 

For the random vectors X(1) and X(2), let 
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It will be convenient to consider X(1) and X(2) jointly, so, the random vector 
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and covariance matrix  
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The covariances between pairs of variables from different sets – one variable from X(1), one variable from X(2) – are 

contained in ∑∑∑∑12 or, equivalent, in ∑∑∑∑12. That is, the pq elements of ∑∑∑∑12 measure the association between the two sets. 

When p and q are relatively large, interpreting the elements of ∑∑∑∑12 collectively is ordinarily hopeless (Johnson and 

Wichern; 1992). Moreover, it is often linear combinations of variables that are interesting and useful predictive or 
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comparative purposes. The main task of canonical correlation analysis is to summarize the associations between the 

X(1) and X(2) sets in terms of a few carefully chosen covariance (or correlations) rather than the pq covariance in ∑∑∑∑12. 
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for some pair of coefficient vectors a and b. Using Equations (5) and (6), 

 









Σ′=′=

′=′=

′=′=

babXXaVU,

bΣbbXbV

aΣaaXaU

12

)2()1(

22

)1(

11

)1(

),()(

)()(

)()(

CovCov

CovVar

CovVar

   … (7) 

We shall seek coefficient vectors a and b such that 
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is as large as possible. We then define: 

 

The first pair of canonical variables are the pair of linear combinations U1, V1 having unit variances, which maximize 

the correlation in Equation (8). 

The second pair of canonical variables are the linear combinations U2, V2 having unit variances, which maximize the 

correlation in Equation (8) among all choices which are uncorrelated with the first pair of canonical variables. 

 

At the kth step: 

The kth pair of canonical variables are the linear combinations Uk, Vk having unit variances, which maximize the 

correlation in Equation (8) among all choices uncorrelated with the previous k – 1 canonical variable pairs. 
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The correlation between the kth pair of canonical variables is called the kth canonical correlation. If the original 

variables are standardized with Z(1) = [ ]′)1()2(
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IDENTIFYING THE CANONICAL VARIABLES 

Even though the canonical variables are artificial, they can often be “identified” in terms of the subject matter 

variables. This identification is often aided by computing the correlations between the canonical variates and the 

original variables. These correlations, however, must be interpreted with caution. They only provide univariate 

information in the sense that they do not indicate how the original variables contribute jointly to the canonical 

analyses. For this reason, many investigators prefer to assess the contributions of the original variables directly from 

the standardized coefficients in Equation (9). 
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Canonical variables derived from standardized variables are sometimes interpreted by computing the correlations. 
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THE SAMPLE CANONICAL VARIATES AND SAMPLE CANONICAL CORRELATIONS 

A random sample of n observations on each of the (p + q) variables X(1), X(2) can be assembled into the ((p + q) × n) 

data matrix 
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The vector of sample means can be organized as 
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Similarly, the sample covariance matrix can be arranged analogous to the representation in Equation (4). Thus 
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The first pair of sample canonical variates is the pair of linear combinations 11 V̂,Û  having unit sample variances 

that maximize the ratio in Equation (19). 

In general: the kth pair of sample canonical variates is the pair of linear combinations kk V̂,Û  having unit sample 

variances that maximize the ratio in Equation (19) among those linear combinations uncorrelated with the previous k 

– 1 sample canonical variates. The sample correlation between kÛ  and kV̂  is called the kth sample canonical 

correlation. 

 

DATA PRESENTATION 

The data used for this research were extracted from Neil H.T. (2002), Applied Multivariate Analysis, Exercises 4.3 

page 216. A sample of 25 samples of tobacco leaf for organic and inorganic chemical constituents was used for the 

study. The dependent variables considered are defined as follows: 

Y1 : Rate of cigarette burn in inches per 1000 seconds 

Y2 : Percentage sugar in the leaf 

Y3 : Percentage nicotine 

 

The fixed independent variables are defined as 

follows. 

X1: Percentage of Nitrogen 

X2: Percentage of Chlorine 

X3: Percentage of Potassium 

X4: Percentage of Phosphorus 

X5: Percentage of Calcium 

X6: Percentage of Magnesium
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Table 1 shows the three dependent variables (Organic Chemical constituents) and six Explanatory variables 

(Inorganic Chemical constituents) of 25 samples of tobacco leaf. 

Table 1: The Tobacco Data of Chemical Components of Tobacco leaves 

Subject 

ID 

Dependent variables Independent variables 

Y1 Y2 Y3 X1 X2 X3 X4 X5 X6 

1 1.55 20.05 1.38 2.02 2.90 2.17 0.51 3.47 0.91 

2 1.63 12.58 2.64 2.62 2.78 1.72 0.5 4.57 1.25 

3 1.66 18.56 1.56 2.08 2.68 2.40 0.43 3.52 0.82 

4 1.52 18.56 2.22 2.20 3.17 2.06 0.52 3.69 0.97 

5 1.70 14.02 2.85 2.38 2.52 2.18 0.42 4.01 1.12 

6 1.68 15.64 1.24 2.03 2.56 2.57 0.44 2.79 0.82 

7 1.78 14.52 2.86 2.87 2.67 2.64 0.5 3.92 1.06 

8 1.57 18.52 2.18 1.88 2.58 2.22 0.49 3.58 1.01 

9 1.60 17.84 1.65 1.93 2.26 2.15 0.56 3.57 0.92 

10 1.52 13.38 3.28 2.57 1.74 1.64 0.51 4.38 1.22 

11 1.68 17.55 1.56 1.95 2.15 2.48 0.48 3.28 0.81 

12 1.74 17.97 2.00 2.03 2.00 2.38 0.50 3.31 0.98 

13 1.93 14.66 2.88 2.50 2.07 2.32 0.48 3.72 1.04 

14 1.77 17.31 1.36 1.72 2.24 2.25 0.52 3.10 0.78 

15 1.94 14.32 2.66 2.53 1.74 2.64 0.50 3.48 0.93 

16 1.83 15.05 2.43 1.90 1.46 1.97 0.46 3.48 0.9 

17 2.09 15.47 2.42 2.18 0.74 2.46 0.48 3.16 0.86 

18 1.72 16.85 2.16 2.16 2.84 2.36 0.49 3.68 0.95 

19 1.49 17.42 2.12 2.14 3.30 2.04 0.48 3.28 1.06 

20 1.52 18.55 1.87 1.98 2.90 2.16 0.48 3.56 0.84 

21 1.64 18.74 2.10 1.89 2.82 2.04 0.53 3.56 1.02 

22 1.40 14.79 2.21 2.07 2.79 2.15 0.52 3.49 1.04 

23 1.78 18.86 2.00 2.08 3.14 2.60 0.50 3.30 0.80 

24 1.93 15.62 2.26 2.21 2.81 2.18 0.44 4.16 0.92 

25 1.53 18.56 2.14 2.00 3.16 2.22 0.51 3.37 1.07 

Source: Exercise 4.3 of Neil H.T. (2002) 
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DATA ANALYSIS 

The organic chemical constituents, X(1), and the inorganic chemical constituents X(2), were defined as: 
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Responses for variables X(1) and X(2) were recorded on a scale and then standardized. The sample correlation matrix 

based on 25 responses is: 

 







=

2221

1211

RR

RR
R  



































−

−−

−−

−−

−

−−

−−

−−

−

−−

−
−−−

−−−

−−−−

−

−

=

000.1729.0514.0611.0118.0604.0

000.1009.0583.0095.0604.0

000.1205.0074.0112.0

000.1093.0007.0

000.1089.0

000.1

734.0525.0313.0

686.0516.0085.0

045.0244.0320.0

294.0190.0487.0

271.0430.0623.0

768.0705.0226.0

734.0686.0045.0294.0271.0768.0

525.0516.0244.0190.0430.0705.0

313.0085.0320.0487.0523.0226.0

000.1702.0216.0

000.1320.0

000.1

 

 

The min(p, q) = min(3, 6) = 3 sample canonical correlations and the sample canonical variate coefficient vectors are 

displayed in Table 2. 
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Table 2: Canonical Variate Coefficients and Canonical Correlations 

Standardized variables  Standardized variables 

 )1(

1Z  
)1(

2Z  
)1(

3Z  
2

iρ̂  
 )2(

1Z  
)2(

2Z  
)2(

3Z  
)2(

4Z  
)2(

5Z  
)2(

6Z  

1â′ : -0.095 -0.439 0.665 0.933 
1b̂′ : 

0.470 -0.355 -0.063 -0.124 0.082 0.479 

2â′  0.990 -0.158 -0.342 0.842 
2b̂′  

0.112 -0.626 0.448 -0.175 0.362 -0.537 

3â′  
0.354 1.370 1.189 0.373 

3b′ˆ  
-1.107 -0.143 1.497 0.551 1.552 0.442 

 

For instance, the first sample canonical variate pair is  

 
)1(

3

)1(

2

)1(

11 Z665.0Z439.0Z095.0Û +−−=  

 
)2(

6

)2(

5

)2(

4

)2(

3

)2(

2

)2(

12 Z479.0Z082.0Z124.0Z063.0Z355.0Z470.0V̂ ++−−−−=  

with sample canonical correlation 
*

1ρ̂  = 0.933. The results above were taken from the SAS Statistical software 

output shown in Appendix. To provide interpretation for 1Û  and 1V̂ , the sample correlations between 1Û  and its 

component variables and 1V̂  and its component variables were computed. Also, we provide the sample correlations 

between variables in one set and the first sample canonical variate of the other set.  

 

Table 3: Sample Correlations between Original Variables and Canonical Variables 

  Sample canonical 

variates 

  Sample canonical 

variates 

 X(1) variables 
1Û  1V̂  

 X(2) variables 
1Û  1V̂  

1 Rate of cigarette burn in 

inches per 1000 seconds 

0.189 0.176 1 Percentage of Nitrogen 0.857 0.799 

2 Percent sugar in the leaf -0.876 -0.817 2 Percentage of Chlorine -0.332 -0.310 

3 Percent nicotine 0.953 0.889 3 Percentage of Potassium -0.349 -0.325 

    4 Percentage of Phosphorus -0.115 -0.107 

    5 Percentage of Calcium 0.729 0.680 

    6 Percentage of Magnesium 0.802 0.749 
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Again, the second sample canonical variate pair is  

 
)1(

3

)1(

2

)1(

11 Z342.0Z158.0Z990.0Û −−=  

 
)2(

6

)2(

5

)2(

4

)2(

3

)2(

2

)2(

12 Z537.0Z362.0Z175.0Z448.0Z626.0Z112.0V̂ −+−+−=  

with canonical correlations 842.0ˆ x

2 =ρ  

The sample correlations between 2Û  and its component variables and 2V̂  and its component variables were 

computed, and presented in Table 4. 

 

Table 4: Correlations between Original Variables and Canonical Variables 

 

  Sample canonical 

variates 

  Sample canonical 

variates 

 X(1) variables 
2Û  2V̂  

 X(2) variables 
2Û  2V̂  

1 Rate of cigarette burn in 

inches per 1000 seconds 

0.967 0.814 1 Percentage of Nitrogen 0.086 0.073 

2 Percent sugar in the leaf -0.235 -0.198 2 Percentage of Chlorine -0.704 -0.593 

3 Percent nicotine -0.017 -0.015 3 Percentage of Potassium 0.656 0.552 

    4 Percentage of Phosphorus -0.404 -0.340 

    5 Percentage of Calcium -0.331 -0.278 

    6 Percentage of Magnesium -0.568 -0.478 

 

ESTIMATING PROPORTIONS OF EXPLAINED SAMPLE VARIANCE 

Using the table of sample correlation coefficients presented in Table 3, we compute 

 [ ]2222
ˆ

3

1

2

ˆ/
)953.0()876.0()189.0(

3

1

3

1
)1(

,1
1

)1( +−+== ∑
= k

Z
U

k
UZ

R  

    = 0.570 

ǳ 
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 [ ]2222
ˆ

6

1

2

ˆ/
)680.0()310.0()799.0(

6

1

6

1
)2(

,1
1

)2( ++−+== ∑
=

K
k

Z
V

k
VZ

R  

    = 0.312 

 [ ]2222
ˆ

3

1

2

ˆ/
)88.0()817.0()176.0(

3

1

3

1
)1(

,1
1

)1( +−+== ∑
= k

Z
V

k
VZ

R  

    = 0.496 

 [ ]2222
ˆ

6

1

2

ˆ/
)802.0()332.0()857.0(

6

1

6

1
)2(

,1
1

)2( ++−+== ∑
=

K
k

Z
U

k
UZ

R  

    = 0.359  

The first sample canonical variate, 1Û , of the organic chemical constituents set accounts for 57% of the set’s total 

sample variance. The next sample canonical variate, 1V̂ , of the organic chemical constituents set accounts for 49.6% 

of the set’s total sample variance. The first sample canonical variates, 1V̂  and 1Û , of the inorganic chemical 

constituents set explains 31.2% and 35.9% respectively of the set’s total sample variance. We might infer that 1Û  of 

the organic chemical constituents is a “better” representative of its set than 1Û  of the inorganic chemical 

constituents is of its set. 

 

Using the table of sample correlation coefficients presented in Table 4, we compute 

 330.0
3

1 2
ˆ

3

1

2

ˆ/ )1(
,2

2
)1( == ∑

= k
Z

U
k

UZ
R   

 255.0
6

1 2
ˆ

6

1

2

ˆ/ )2(
,2

2
)2( == ∑

= k
Z

U
k

UZ
R  

 

TEST OF SIGNIFICANCE OF THE CANONICAL CORRELATION 

The first two canonical correlations, 
*

1ρ  and 
*

2ρ , appear to be nonzero, small deviations from zero will show up as 

statistically significant. From a practical point of view, the third sample canonical correlation can probably  be 

ignored since (i) it is reasonably small in magnitude and (ii) the corresponding canonical variate explains very little of 

the sample variation in the variable  sets X(1) and X(2). Thus from the SAS output in Appendix, the p-values for both 

the first and second canonical correlation are small, implying that they are significant, while the third canonical 

ǳ 

ǳ 

ǳ 

ǳ 

ǳ 
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correlation is insignificant because of the high p-value observed. The SAS output revealed that there is a relationship 

between the organic chemical constituents and the inorganic chemical constituents. 

 

CONCLUSION 

In light of the discussion in the analysis above, it is desirable to conclude that 1Û  of the organic chemical 

constituents is a “better” representative of its set than 1Û  of the inorganic chemical constituents is of its set. Again, 

it can be concluded that canonical relations exhibited by the organic chemical constituents-inorganic chemical 

constituents’ data showed statistically significant in the first two canonical correlations, and statistically insignificant 

in the last (third) canonical correlation. Hence, the third sample canonical correlation can probably be ignored since 

(i) it is reasonably small in magnitude and (ii) the corresponding canonical variate explains very little of the sample 

variation in the variable  sets X(1) and X(2). The statistical software package known as “SAS” was used for the 

analysis. Finally, we concluded that relationship exists between the organic chemical constituents and the inorganic 

chemical constituents of the Tobacco leaf samples. 
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Appendix 

 

                              CANONICAL CORRELATION ANALYSIS                                

 

                                     The CANCORR Procedure 

   

                                 Canonical Correlation Analysis 

  

                                            Adjusted    Approximate        Squared 

                            Canonical      Canonical       Standard      Canonical 

                          Correlation    Correlation          Error    Correlation 

  

                     1       0.932833       0.911615       0.026500       0.870178 

                     2       0.841830       0.818082       0.059466       0.708677 

                     3       0.372589       0.244024       0.175787       0.138823 

  

                                            

   

                            Eigenvalue    Difference    Proportion    Cumulative 

  

                       1        6.7029        4.2703        0.7210        0.7210 

                       2        2.4326        2.2714        0.2617        0.9827 

                       3        0.1612                      0.0173        1.0000 

  

         Test of H0: The canonical correlations in the current row and all that follow 

are zero 

   

                          Likelihood    Approximate 

                               Ratio        F Value    Num DF    Den DF    Pr > F 

  

                     1    0.03256974           5.99        18     45.74    <.0001 

                     2    0.25088065           3.39        10        34    0.0037 

                     3    0.86117729           0.73         4        18    0.5860 
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                         Multivariate Statistics and F Approximations 

   

                                       S=3    M=1    N=7 

   

        Statistic                        Value    F Value    Num DF    Den DF    Pr > F 

  

        Wilks' Lambda               0.03256974       5.99        18     45.74    <.0001 

        Pillai's Trace              1.71767816       4.02        18        54    <.0001 

        Hotelling-Lawley Trace      9.29669312       7.82        18      26.5    <.0001 

        Roy's Greatest Root         6.70287464      20.11         6        18    <.0001 

  

                 NOTE: F Statistic for Roy's Greatest Root is an upper bound. 

                                CANONICAL CORRELATION ANALYSIS                                

 

                                     The CANCORR Procedure 

   

                                 Canonical Correlation Analysis 

  

                          Raw Canonical Coefficients for the DEPENDENT 

   

                                       Y1                Y2                Y3 

  

                   CIGA      -0.567454753      5.9283579738      2.1219838311 

                   SUG        -0.21357303      -0.076997869      0.6662667083 

                   NICO      1.2686054086      -0.652344499      2.2681256242 

  

                         Raw Canonical Coefficients for the INDEPENDENT 

   

                                       X1                X2                X3 
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                   NIT        1.701975296      0.4035558583        -4.0084506 

                   CHL       -0.585074603      -1.033109895      -0.236026202 

                   POT       -0.245810896       1.743127023      5.8313954746 

                   PHOS      -3.777601377      -5.349481012      16.800987983 

                   CAL        0.207617387      0.9175780763      3.9403805249 

                   MAG       3.7888870876      -4.249798754      3.5024870632 
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                              CANONICAL CORRELATION ANALYSIS                                

 

 

                                     The CANCORR Procedure 

   

                                 Canonical Correlation Analysis 

  

                      Standardized Canonical Coefficients for the DEPENDENT 

   

                                         Y1            Y2            Y3 

  

                         CIGA       -0.0947        0.9898        0.3543 

                         SUG        -0.4391       -0.1583        1.3699 

                         NICO        0.6649       -0.3419        1.1887 

  

                     Standardized Canonical Coefficients for the INDEPENDENT 

   

                                         X1            X2            X3 

  

                         NIT         0.4701        0.1115       -1.1072 

                         CHL        -0.3545       -0.6259       -0.1430 

                         POT        -0.0631        0.4475        1.4971 

                         PHOS       -0.1239       -0.1754        0.5509 

                         CAL         0.0818        0.3615        1.5523 

                         MAG         0.4785       -0.5367        0.4423 

 

                               CANONICAL CORRELATION ANALYSIS                                

 

                                     The CANCORR Procedure 

   

                                      Canonical Structure 

  

                Correlations Between the DEPENDENT and Their Canonical Variables 
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                                         Y1            Y2            Y3 

  

                         CIGA        0.1890        0.9667        0.1723 

                         SUG        -0.8756       -0.2349        0.4222 

                         NICO        0.9527       -0.0174        0.3034 

  

               Correlations Between the INDEPENDENT and Their Canonical Variables 

   

                                         X1            X2            X3 

  

                         NIT         0.8565        0.0863        0.0735 

                         CHL        -0.3318       -0.7040        0.1244 

                         POT        -0.3486        0.6561        0.2220 

                         PHOS       -0.1146       -0.4042        0.4471 

                         CAL         0.7285       -0.3308        0.3030 

                         MAG         0.8024       -0.5679        0.1132 

  

        Correlations Between the DEPENDENT and the Canonical Variables of the 

INDEPENDENT 

   

                                         X1            X2            X3 

  

                         CIGA        0.1763        0.8138        0.0642 

                         SUG        -0.8168       -0.1978        0.1573 

                         NICO        0.8887       -0.0146        0.1130 

  

        Correlations Between the INDEPENDENT and the Canonical Variables of the 

DEPENDENT 

   

                                         Y1            Y2            Y3 

  

                         NIT         0.7990        0.0727        0.0274 

                         CHL        -0.3096       -0.5926        0.0464 
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                         POT        -0.3252        0.5523        0.0827 

                         PHOS       -0.1069       -0.3403        0.1666 

                         CAL         0.6796       -0.2784        0.1129 

                         MAG         0.7485       -0.4781        0.0422 

 

 

 

 

 


